Gaining Apex Coaching Centre

(Where Toppers make...... Toppers)

CLASS: XIth CHEMISTRY			SUBJECT:					
	DATE:			DPP No. :1	_			
Topic:-Some Basic Concepts of Chemistry								
1.	obtained from 10	clohexanol is dehydrated to cyclohexene on heating with conc H_2SO_4 . The cyclohexene tained from $100~\rm g$ cyclohexanol will be yield of reaction is 75%)						
	a) 61.5 g	b) 75.0 g	c) 20.0 g	d) 41.0 g				
2.	A compound was found to contain nitrogen and oxygen in the ratio, nitrogen 28 g and 80 g of oxygen. The formula of the compound is:							
	a) NO	$b) N_2 O_3$	c) N_2O_5	$d) N_2 O_4$				
3.	compound could		cal formula $C_2H_4N_2(C_2H_2)$ en the rating of pure vers c) 200 mg	O_2 Na) ₄ . If each mole of the sene expressed as mg of d) 263 mg	is			
4.	Which of the following is correct? a) Meq. = $N \times V_{\text{in mL}} = \frac{\text{wt.}}{\text{Eq.wt.}} \times 1000$ b) Eq. = $N \times V_{\text{in mL}} = \frac{\text{wt.}}{\text{Eq.wt.}}$ c) Equal equivalent or milli equivalent of reactants react to give same eq. or Meq. of products d) All of the above							
5. 1.0 g of pure calcium carbonate was found to require 50 mL of dilute HCl for complete reactions. The strength of the HCl solution is given by:								
	a) 4 <i>N</i>	b) 2 <i>N</i>	c) 0.4 N	d) 0.2 <i>N</i>				
6.	The number of atoms in 4.25 g of NH ₃ is approximately							
-	a) 6×10^{23}	b) 2×10^{23}	c) 1.5×10^{23}	d) 1×10^{23}				
7	Mn∩- ions are re	aduced in acidic condition	on to Mn ²⁺ ions whoreas	they are reduced in neutr	al			

7. MnO_4^- ions are reduced in acidic condition to Mn^{2+} ions whereas they are reduced in neutral condition to MnO_2 . The oxidation of 25 mL of a solution X containing Fe²⁺ ions required in

Gaining Apex Coaching Centre

(Where Toppers make...... Toppers)

	acidic condition 20 mL of a solution Y containing MnO $_4^-$ ions. What volume of solution Y would be required to oxidise 25 mL of a solution X containing Fe $_4^-$ ions in neutral condition?						
				d) 35.0 mL			
8.	a) 11.4 mL	b) 12.0mL	c) 33.3 mL	a) 35.0 IIIL			
δ.	a) 25	e in 100 u of He (atomic s b) 100	c) 50	d) $100 \times 6 \times 10^{-23}$			
9.		present in 1.0 cm ³ of so					
	a) 2.68×10^{21}	b) 6.42×10^{22}	c) 2.68×10^{22}	d) 2.68×10^{23}			
10.	For preparing $M/10$ solution of H_2SO_4 in one litre we need H_2SO_4 :						
	a) 9.8 g	b) 49.0 g	c) 4.8 g	d) 0.09 g			
11.	Given, that the abundances of isotopes $_{54}$ Fe, $_{56}$ Fe and $_{57}$ Fe are 5%, 90% and 5%, respectively, the atomic mass of Fe is						
	a) 55.85	b) 55.95	c) 55.75	d) 56.05			
12.	The concentration of solution containing 0.5 mole H_3PO_4 dissolved in 500 g water:						
	a) 1 <i>m</i>	b) 1 <i>M</i>	c) 1 N	d) 0.5 <i>M</i>			
13.	Which of the following is correct?						
	a) Mole = molarity $\times V_{\text{in L}} = \frac{\text{wt.}}{\text{mol. wt.}}$						
	b) Milli mole = molarity× $V_{\text{in mL}} = \frac{\text{wt.}}{\text{mol. wt.}} \times 1000$						
	c) Mole and milli mole of reactants react according to stoichiometric ratio of balanced chemica equation						
	d) All of the above						
14.	$100~{\rm g}$ of ${\rm CaCO_3}$ is treated with 1 L of 1 N HCI. What would be the weight of ${\rm CO_2}$ liberated after						
	the completion of the r			N. 0.0			
	a) 55 g	b) 11 g	c) 22 g	d) 33 g			
15.	If an iodized salt contains 1% KI and a person takes 2 g of the salt every day, the iodide ions going into his body every day would be approximately						
	a) 7.2×10^{21}	b) 7.2× 10 ¹⁹	c) 3.6× 10 ²¹	d) 9.5×10^{19}			
16.	The mass of 11.2 L of ammonia gas at STP is						
	a) 8.5 g	b) 85 g	c) 17 g	d) 1.7 g			
17.	$0.52~{ m g}$ of dibasic acid required $100~{ m mL}$ of $0.1~N$ NaOH for complete neutralization. The equivalent weight of acid is:						

Gaining Apex Coaching Centre

(Where Toppers make...... Toppers)

b) 52 c) 104 a) 26 d) 156

18. 100 tons of Fe_2O_3 containing 20% impurities will give iron by reduction with H_2 equal to a) 112 tons b)80 tons c) 160 tons d) 56 tons

19. 25 mL of a solution of barium hydroxide on titration with 0.1 *M* solution of HCl gave a titre value of 35 mL. The molarity of Ba(OH)₂ is:

a) 0.28

b) 0.35

c) 0.07

d) 0.14

20. Volume occupied by one molecule of water (density = 1 g cm^{-3}) is:

a) $6.023 \times 10^{-23} \text{cm}^3$ b) $3.0 \times 10^{-23} \text{cm}^3$ c) $5.5 \times 10^{-23} \text{cm}^3$

d) 9.0×10^{-23} cm³