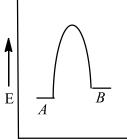
Gaining Apex Coaching Centre


(Where Toppers make...... Toppers)

	DPPP DAILY PRACTICE PROBLEMS					
	Class: XIIth			Subject :		
	HEMISTRY Date :			DPP No. : 3		
		[•] •••••••••••••••••••••••••••••••••••	Chemical Kinetio	niminert CS		
1.	The rate constants k respectively. The tem			$0^{16}e^{-2000/T}$ and $10^{15}e^{-1000/T}$,		
	a) $\frac{2000}{2.303}$ K	b) 2000 K	c) <u>1000</u> K	d) 1000 K		
2.	to $1/3^{rd}$ of its initial v	olume. The rate o	f the reaction will be incre	•		
	a) 3 times	b)9 times	c) 27 times	d) 36 times		
3.	The time for half-life period of a creation reaction $A \rightarrow$ products is 1 h. when the initial concentration of the reactant 'A', is 2.0 mol L^{-1} , how much time does it take for its concentration to come from 0.50 to 0.25 mol L^{-1} , if it is a zero order reaction?					
	a) 4 h	b) 0.5 h	c) 0.25 h	d) 1 h		
4.	concentration of B, th	e rate gets double	oncentration of A is double ed. If the concentration of I , the rate gets tripled. The c) 3/2	B is increased by nine times		
5.	What fraction of a rea a) 1/4	actant showing firs b) 1/2	st order remains after 40 r c) 1/8	ninute if $t_{1/2}$ is 20 minute? d) 1/6		
6.			us reaction at an initial pre iod is 175 s. The order of t c) Two	essure of 80 kPa is 350 s. when he reaction is d) Three		
7.	Which of the followin a) $k[H_2]^{3/2}$	0		$p para hydrogen = -\frac{d[H_2]}{dt} =$		

Gaining Apex Coaching Centre (Where Toppers make...... Toppers)

b) Rate of the reaction involving the thermal decomposition of acetaldehyde = $k[CH_3CHO]^{1/2}$ c) In the formation of phosgene from CO and Cl₂, the rate of the reaction = $k[CO][Cl_2]^{1/2}$ d) In the decomposition of H₂O₂, the rate of reaction = $k[H_2O_2]$

- 8. At 373 K, a gaseous reaction $A \rightarrow 2B + C$ is found to be of first order. Starting with pure *A*, the total pressure at the end of 10 min was 176 mm and after a long time when *A* was completely dissociated, it was 270 mm. The pressure of *A* at the end of 10 min was a) 94 mm b) 47 mm c) 43 mm d) 90 mm
- 9. For a reversible reaction, $A \rightleftharpoons B$, which one of the following statements is wrong from the given energy profile diagram?

Reaction coordinate

- a) Activation energy of forward reaction is greater than backward reaction
- b) The forward reaction is endothermic
- c) The threshold energy is less than that of activation energy
- d) The energy of activation of forward reaction is equal to the sum of heat of reaction and the energy of activation of backward reaction
- 10. Which one of the following is wrongly matched?
 - a) Saponification of $CH_3COOC_2H_5$ -second order reaction
 - b) Hydrolysis of CH_3COOCH_3 -pseudo unimolecular
 - c) Decomposition of H_2O_2 -first order reaction

d) Combination of H_2 and Br_2 to give HBr -first order reaction

11. For the reaction,

 $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$

If the concentration of NO_2 increase by $5.2 \times 10^{-3}M$ in 100 s then the rate of the reactions a) $1.3 \times 10^{-5}Ms^{-1}$ b) $0.5 \times 10^{-4}Ms^{-1}$ c) $7.6 \times 10^{-4}Ms^{-1}$ d) $2 \times 10^{-3}Ms^{-1}$

12. The rate of the reaction $A \rightarrow \text{product}$, at the initial concentration of $3.24 \times 10^{-2}M$ is nine times its rate at another initial concentration of $1.2 \times 10^{-3}M$. The order of the reaction is a) $\frac{1}{2}$ b) $\frac{3}{4}$ c) $\frac{3}{2}$ d) $\frac{2}{3}$

	4	2	3
1	14-A , Kali Mata Mandir, Rishi Nagar, Ludhiano		

Gaining Apex Coaching Centre (Where Toppers make...... Toppers)

- 13. The half-life period for zero order reaction A → product, is 100 min. How long will it take in 80% completion?
 a) 80 min
 b) 160 min
 c) 100 min
 d) 200 min
- 14. Consider the reaction $2A + B \rightarrow product$ When concentration of B alone was doubled, the half-life did not change. When the concentration of A alone was doubled, the rate increased by two times. The unit of rate constant for this reaction is a) $L mol^{-1}s^{-1}$ b) No unit c) $mol L^{-1}s^{-1}$ d) s^{-1}
- 15. The expression for rate constant of a first order chemical reaction is

a)
$$k = \frac{1}{t} \cdot \frac{x}{a(a-x)}$$

b) $k = \frac{2.303}{t} \log_{10} \frac{a}{(a-x)}$
c) $k = \frac{x}{t}$
d) $k = \frac{1}{2t} \left[\frac{1}{(a-x)^2} - \frac{1}{a^2} \right]$

- 16. In gaseous reactions important for the understanding of the upper atmosphere H_2O and O react bimolecularly to form two OH radicals. ΔH for this reaction is 72kJ at 500 K and E_a is 77 kJ mol⁻¹, then E_a for the bimolecular recombination of two OH radicals to form H_2O and O is: a) 3 kJ mol⁻¹ b) 4 kJ mol⁻¹ c) 5 kJ mol⁻¹ d) 7 kJ mol⁻¹
- 17. Activation energy of a reaction
 - a) Is independent of temperature
 - b) Increases with temperature
 - c) Gets doubled for every 10 degree rise in temperature
 - d) Decreases with temperature
- 18. For a I order reaction $A \rightarrow B$ the reaction rate at reactant concentration 0.01*M* is found to be $2.0 \times 10^{-5} Ms^{-1}$. The half-life period of the reaction is: a) 30s b) 300s c) 220s d) 347s
- 19. For a zero order reaction, the plot of concentration of reactant vs time is (intercept refers to concentration axis)
 - a) Liner with positive slope and zero intercept
 - b) Linear with negative slope and zero intercept
 - c) Linear with negative slope and non-zero intercept
 - d) Linear with positive slope and non-zero intercept

Gaining Apex Coaching Centre (Where Toppers make...... Toppers)

20. The rate of reaction between two reactants *A* and *B* decreases by a factor 4, if the concentration of reactant *B* is doubled. The order of this reaction with respect to *B* is:

a) -1 b) -2 c) 2 d) 1