(Where Toppers make...... Toppers)

Polynomials

CHECK POST-3

1.	If x = 2, y = 1 and z = (A) 6	= - 3 then x ³ + y ³ + z ³ - (B) 0	- 3xyz is equal to : (C) 2	(D) 8
2.	If $x - \frac{1}{x} = 3$ then $x^2 + \frac{1}{x}$	$\frac{1}{x^2}$ is equal to :		
	(A) 7	(B) – 11	(C) 11	(D) – 7
3.	Find the value of $27x^3$ (A) 1	- 64y ³ - 108x ² y + 144x (B) 0	xy ² , if x = 3 and y = 2 : (C) 512	(D) 347
4.	If a = 2, b = -6, c = 4 (A) 144	1, then the value of a ³ - (B) 288	⊢ b ³ + c ³ is equal to : (C) – 144	(D) – 288
5.	Find the value of (3x - (A) 143	+ 2y – 3z) (9x ² + 4y ² + (B) 431	9z ² – 6xy + 6yz + 9xz) (C) 217	if x = 2, y = 1, z = -1: (D) 912
6.	Factorize : $x^2 - ab + c$	$(a - b) \times by$ splitting the	e middle term.	
7.	Evaluate 497 × 503 by	using expansion metho	d.	
8.	Factorize : $x^2 - y^2 - 2x$	x - 4y + 1 - 4.		
9.	If $\frac{x^2 + 1}{x} = 11$, find the	the value of $x^2 + \frac{1}{x^2}$.		

 $\sqrt{5}$ $\sqrt{3}$

T0. Factorize : $3\sqrt{3}a^3 + 5\sqrt{5}b^3 + 9a^2b + 15ab^2$

GOLDEN KEY POINTS

- A non-zero constant is a polynomial of degree zero, but the degree of zero polynomial is not defined.
- 'If the sum of the co-efficients of polynomial is zero, then (x 1) is a factor of the polynomial.
- A polynomial in x is said to be a polynomial in standard form, if the powers of x are either in ascending order or in descending order.
- A polynomial of degree $n \ge 1$ can have at the most n real zeros.
- A non-zero constant polynomial has no zero.

Ju n n·

- Every linear polynomial has one and only one real zero.
- A quadratic polynomial ax² + bx + c, a ≠ 0 can have at most two real zeros. In some cases, it may
 not have any real zero.

Class IX : Mathe Gaining Apex Coaching Centre

(Where Toppers make...... Toppers)

• If the sum of the coefficients of odd powers in a polynomial is equal to sum of coefficients of even powers, then (x + 1) is a factor of the polynomial.

(Where Toppers make...... Toppers)

Polynomials

	EXERCISE – 1			ELEMENTARY
1.	A polynomial (A) 5 terms	of degree 5 in x has at mos (B) 4 terms	t (C) 6 terms	(D) 10 terms
2.	The value of (A) 42	$P(x) = x^2 - 7x + 12 \text{ at } x = 3$ (B) 0	3 is (C) 8	(D) –6
3.	The value of I (A) 3	< for which x – 1 is a factor (B) 0	of the polynomial 4x (C) 1	$x^{3} + 3x^{2} - 4x + k$ is (D) -3
4.	When the pol (A) 1	ynomial x ³ + 3x ² + 3x + 1 i (B) 8	s divided by x + 1, th (C) 0	ne remainder is (D) –6
5.	If $p(x) = x^2 - $	$2\sqrt{2}x + 1$, then $p\left(\frac{2}{\sqrt{2}}\right)$ is a	equal to	
	(A) 0	(B) –1	(C) 4√2	(D) 8\sqrt{2} + 1
6.	If p(x) = x + (A) 3	3, then p(x) + p(–x) is equ (B) 2x	al to - (C) 0	(D) 6
7.	If x ⁵¹ + 51 is (A) 0	divided by x + 1, the remai (B) 1	nder is (C) 49	(D) 50
8.	The value of ((A) 2	polynomial 3x + 2x ² – 6 at x (B) 3	x = 0 is : (C) 6	(D) –6
9.	If (x – 2) is a f (A) 1	factor of the polynomial x ⁴ – (B) 0	$2x^3 + ax - 1$, then the (C) $\frac{1}{2}$	e value of a is : <u>1</u> (D) - <u>1</u> 2
10.	. The remainde (A) p	r when $x^3 - px^2 + 6x - p$ is c (B) 5p	livided by x – p is : (C) –5p	(D) 5p ²
11. 12.	The factors of (A) $(x - 1) (x)$ (C) $(x + 1) (x)$ $0.83 \times 0.83 \times 0.83 - 0.83 \times 0.83 - 0.83 \times 0.83 - 0.83 $	f $x^3 - 2x^2 - 13x - 10$ are + 2) (x + 5) (x - 2) (x + 5) $0.83 + 0.17 \times 0.17 \times 0.17$ $0.83 \times 0.17 + 0.17 \times 0.17$	(B) (x – 1) (x – (D) (x + 1) (x	- 2) (x – 5) + 2) (x – 5)
	is equal to (A) 1	(B) (0.83) ³ + (0.1	.7) ³ (C) 0	(D) None of these
13.	One of the ze	roes of the polynomial $2x^2$	+ 7x – 4 is	
	(A) 2	(B) ¹ / ₂	(C) $-\frac{1}{2}$	(D) – 2

54

	Gaining	Apex Coa	aching Ce	ntre
	(Where	Toppers make	e Toppers	S) Polynomials
14.	One of the factors of ((A) 5 + x	$(25x^2 - 1) + (1 + 5x)^2$ is (B) $5 - x$	s (C) 5x – 1	(D) 10x
15.	Factors of $a^2 - b + ab$ (A) (a - b) (a + 1)	– a are: (B) (a + b) (a – 1)	(C) (a – b) (a – 1)	(D) (a + b) (a + 1)
16.	If $x^2 - x - 42 = (x + k)$ (A) 6	(x + 6) then the value (B) –6	of k is (C) 7	(D) –7
17.	If $\begin{pmatrix} 1 \\ x - \frac{1}{x} \end{pmatrix}^2 = x^2 + k + k^2$	$\frac{1}{x^2}$ then the value of	k is	
	(A) –2	(B) 2	(C) 2x	(D) –2x
18.	Factor of $x^2 - 7x + 12$ (A) $(x - 3) (x + 4)$	are (B) (x – 3) (x – 4)	(C) (x + 3) (x – 4)	(D) (x + 3) (x + 4)
19.	If one factor of a(x + (A) ax + ay + az	y + z) + bx + by + bz (B) bx + by + bz	is (x + y + z) then the s (C) bx + by – bz	second factor is (D) a + b
20.	If $49x^2 - b = (7x + \frac{1}{7})$	$(7x - \frac{1}{7})$, then the val	ue of b is	
	2	2 [#]		
	(A) 0	(B) $\frac{1}{\sqrt{2}}$	(C) $\frac{1}{4}$	(D) $\frac{1}{2}$
21.	If $98^2 - 82^2 = 3^x \cdot 5^y$. (A) (1, 2, 6)	2 ^z , then (x, y, z) is equa (B) (6, 1, 2)	l to : (C) (2, 1, 6)	(D) (2, 6, 1)
22.	(2x + 5) (2x + 7) is eq (A) 4x ² + 12x + 35	ual to : (B) 2x ² + 12x + 35	(C) 4x ² + 24x + 35	(D) 4x ² + 24x - 35
23.	On factorising $x^2 + 8x$ (A) (x + 3) (x - 5)	+ 15, we get : (B) (x – 3) (x + 5)	(C) (x + 3) (x+ 5)	(D) (x − 3) (x −5)
24.	On dividing $x^2 - 2x - 1$.5 by (x – 5), the quotie	ent is (x + 3) and remai	nder is 0. Which of the
	following statement is (A) $x^2 - 2x - 15$ is a mu (C) $(x + 3)$ is a factor of	true? Iltiple of (x – 5) of (x – 5)	(B) x² – 2x – 15 is a fa (D) (x + 3) is a multipl	ctor of (x – 5) e of (x – 5)
25.	If $x^{-\frac{1}{2}} = 3$, then x^2 +	<u> 1 is :</u>		
	x (A) 11	x ² (B) 75	(C) 10	(D) 5

(Where Toppers make...... Toppers)

	XERCISE – 2			SEASONED
1.	If $x^{100} + 2x^{99} + k$ is divided (A) 1	isible by (x + 1), then the (B) – 3	e value of k is : (C) 2	(D) – 2
2.	Which one of the follow $\frac{x^2}{2} - \frac{2}{x^2}$ (A) 2 x ²	wing is a polynomial ? $\sqrt{2x}$ (B) -1	(C) $x^2 + \frac{3x^{3/2}}{\sqrt{x}}$	<u>x - 1</u> (D) _{x + 1}
3.	$(a - b)^3 + (b - c)^3 +$ (A) 3abc (C) 3(a - b) (b - c) (c	(c – a) ³ is equal to – a)	(B) 3a ³ b ³ c ³ (D) [a – (b + c)] ³	
4.	The values of a and b (x - 3) are (A) a = 15, b = 3	so that the polynomial (B) $a = 0, b = -12$	$x^3 - ax^2 - 13x + b$ is di (C) a = -3, b = -15	visible by $(x + 1)$ and (D) a = -12, b = 0
5.	If we divide the polyno same remainder, then	mials $4x^3 - 3x^2 + 4x + 4x$ the value of a is	and $4x^3 - 3x^2 - 8x + 1$ by	/ 2x + 3a then we get the
	(A) 6	(B) – 6	$(C) - \frac{1}{6}$	(D) $\frac{1}{6}$
6.	The factors of $(x^2 + 4y)$ (A) $(x - 2y - 4) (x - 2y)$ (C) $(x + 2y - 4) (x + 2y)$	/ ² + 4y – 4xy – 2x – 8) ai / + 2) ly + 2)	re : (B) (x – y + 2) (x – 4y (D) None ofthese	- 4)
7.	$If \frac{X_{+}Y}{(A)^{1}} = -1 (x, y \neq x)$	0), the value of x ³ – y ³ (B) – 1	is (C) 0	(D) $\frac{1}{2}$
8. Fa	actorisation of $a^4 + a^2b^2$ ($a^2 + ab + b^2$) ($a^2 - ab^2$ ($a^2 - b^2 + ab$) ($a^2 + b^2$	+ b ⁴ ? (A) o + b ²) (C) + ab)	(B) $(a^2 + b^2 + ab) (a^2 - (D) (a^2 - b^2 + ab) (a^2 - b^2 + ab) (a^2 - b^2 + ab) (a^2 - b^2 - ab) (a^2 - b^2 - b^2)$	+ b² + ab) - b² + ab)
9.	Factorisation of $x^4 + 4$ (A) $(x^2 + 2) (x^2 - 2)$ (C) $(x^2 + 2x - 2) (x^2 + 2x - 2)$: 2x + 2)	(B) $(x^2 + 2 + 2x) (x^2 + (D) (x^2 + 2) (x^2 + 2))$	- 2 – 2x)
10.	On factorising $a^3 + 3$	b ³ , we get		
	(A) $(a+b)(a^2+\frac{3}{\sqrt{2}})$	$3ab+3b^2$	(B) $(a + b)(a^2 - 3)$	$ab + 3b^2$)
	(C) $(a + \sqrt{3}b)(a^2 - \sqrt{3}b)($	$3ab-3b^2$	(D) $(3 a_{\sqrt{3}} b)(a^2 - 3)$	$ab + 3b^2$)
	$\sqrt{3}$ $$	-	$$	-

56

(Where Toppers make...... Toppers)

Polynomials

EXERCISE - 3

CBSE PATTERN

Very Short answer type questions

- 1. Which of the following expressions are polynomial ?
 - (i) 11x + 1(ii) $7x^2 - 5x + \sqrt{5}$ (iii) $t^3 - 2t + 1$ (iii) $x^2 - \frac{1}{x^2}$ (iv) $\sqrt{y} + 5y - 1$ (vi) $z^{11} - 5z^7 + \frac{1}{4}$

2. Write the coefficient of x^3 in each of the following :

- (i) $3x^3 3x + 2$ (ii) $14x^4 - 2x^3 + 5x - 7x^2$ (iii) $\sqrt{2}x^2 + 1$ (iv) $\frac{3}{4}x^3 + 2x - 3$
- 3. Write the degree of each of the following polynomials : (i) $3x^2 - 4x + 2$ (ii) $7x^3 + 2x^2 + x$ (iii) $5 - x^2$ (iv) $1 + 2x + 3x^2 - 11x^4$
- 4. Classify the following as linear, quadratic and cubic polynomials :

(i) $x^3 - 4$ (ii) $x^2 + 1$ (iii) $5x^2 - 3x + \sqrt{7}$ (iv) 1 + 5x (v) $4r^3$

Short answer type questions

- 5. Find the value of the following polynomial at the indicate value of variables :
 - (i) $p(x) = 5x^2 3x + 7$ at x = 1(ii) $q(y) = 3y^2 - 4y + \sqrt{11}$ at y = 2(iii) $p(t) = 4t^4 + 5t^3 - t^2 + 6$ at t = 1
- 6. Find the zeroes of each of the following polynomials :
 - (i) p(x) = x 4(ii) g(x) = 2x + 1(iii) p(x) = (x + 1) (x + 2)(iv) p(x) = (x 1) (x 2) (x 3)(v) $p(x) = 7x^2$ (vi) $p(x) = rx + s, r \neq 0$
- 7. Verify whether the following are zeroes of the polynomial indicated against them :

(i)
$$p(x) = 5x - 1$$
, $x = \frac{1}{5}$
(ii) $p(x) = (x - 2) (x - 5)$, $x = 2, 5$
(iii) $s(x) = x^2$, $x = 0, 1$
(iv) $p(x) = 3x^2 - 1$, $x = -\frac{1}{\sqrt{3}}$, $\frac{2}{\sqrt{3}}$
(v) $g(x) = 5x^2 + 7x$, $x = 0$, $-\frac{7}{5}$

(Where Toppers make...... Toppers)

Gaining Apex Coaching Centre

(Where Toppers make...... Toppers)

8. Use remainder theorem to find remainder when p(x) is divided by q(x) in the following questions:

(i) $p(x) = 2x^2 - 5x + 7$, q(x) = x - 1(ii) $p(x) = x^9 - 5x^4 + 1$, q(x) = x + 1(iii) $p(x) = 4x^3 - 12x^2 + 11x - 5$, q(x) = x - 1(iv) $p(x) = x^4 + x^3 + x^2 - 5x + 1$, q(x) = x + 1

- 9. Use factor theorem to verify in each of the following that q(x) is a factor of p(x)
 - (i) $p(x) = 3x^2 5x + 2$, q(x) = 3x 2
 - (ii) $p(x) = x^4 x^3 + x 1$, q(x) = x + 1
 - (iii) $p(x) = x^5 x^4 4x^2 2x + 4$, q(x) = x 2

Long answer type questions

- 10. Let A and B are the remainders when the polynomial $y^3 + 2y^2 5ay 7$ and $y^3 + ay^2 12y + 6$ are divided by y + 1 and y 2 respectively. If 2A + B = 6, find the value of a
- 11. Simplify :
 - (i) $(a + b)^3 + (a b)^3 + 6a(a^2 b^2)$
 - (ii) $(2a + b + c)^2 + (2a b c)^2$
- 12. Find the value of : (i) $x^3 + y^3 - 12xy + 64$ when x + y = -4
- (ii) $x^3 8y^3 36xy 216$ when $x = \frac{2}{2}y + 6$ **13.** Prove that $a^3 + b^3 + c^3 - 3abc = \frac{1}{2}(a + b + c)[(a - b)^2 + (b - c)^2 + (c - a)^2]$
- **High Order Thinking Skills (HOTS) 14.** Find the value of $(x - a)^3 + (x - b)^3 + (x - c)^3 - 3(x - a) (x - b) (x - c)$ when a+b+c=3x
- **15.** If k and 2k are zeros of $f(x) = x^3 + 4x^2 + 9kx 90$, find k and all three zeros of f(x).

(Where Toppers make...... Toppers)

Polynomials

	EXERCISE – 4			COMPETITIVE ASSESSMENT
1.	If 9x ² - 15x +	$6 = 0 \text{ and } \left(3x - \frac{5}{2} \right)^2 = k$	are identical, then the va	lue of k is–
	(A) $\frac{1}{4}$	(B) 4	(C) 9	[STSE Stage-1 2015] (D)
2.	If one of the fa	actors of $x^3 - 2x^2 - x + 2$ i	s (x + 1), then another fa	ctor will be [STSE Stage-1 2015]
	(A) $x^2 - 3x + 2$	(B) $x^2 + 3x - 2$	(C) $x^2 - 3x - 2$	(D) $x^2 + 3x + 2$
3.	If (x + 2) is a fa (A) 6	actor of $2x^3 - 5x + k$, the (B) - 6	n the value of k is (C) 26	[NTSE Stage-1 2016] (D) –26
4.	If a =x - y, b = (A) 3(x-y) (y- (C) (x + y + z)	= y – z and c = z – x then z) (z–x) 3	the value of $a^3 + b^3 + c^3$ (B) $(x-y)^3 (y-z)$ (D) $x^3 + y^3 + z^3$	is : [NTSE Stage-1 2016] ³ (z–x) ³
5.	If $(x+\sqrt{2})$ is a f	factor of $kx^2 - 2x + 1$, the	en the value of k is	[NTSE Stage-1 2016]
	(A) - ³ 2	(B) $-\frac{2}{3}$	(C) $\frac{3}{2}$	(D) $\frac{2}{3}$
6.	If a polynomia	$1x^4 - 4x^2 + x^3 + 2x + 1$ is	divided by $x - 1$, then rem	nainder will be
	(A) 0	(B) 1	(C) 9	[NTSE/Stage-1/2018] (D) –1
7.	If $x^2 + 4y^2 + 92$ (A) $x = 2y - 32$	$z^2 - 4xy - 12yz + 6xz = 0$ z (B) x = y - 3z), (C) 2x = y− 3z	[NTSE/Stage-1/2018] (D) x = 3y -2z.

ANSWERS

CHECK POST-1			
1. (C)	2. (B)	3. (B)	4. (A)
5. (A)	6. (i) 2	(ii) 7	
7. (i) 2	(ii) x ³ + 5x ²	(iii) 7x ¹⁰ + 5x ⁴ + 1	
8. (i) π	(ii) –1	9. (i) $-\frac{\pi}{3}$	(ii) –3, 4
CHECK POST-2			
1. (A)	2. (B)	3. (B)	4. (C)
5. (D)	6. $\frac{5}{9}$	7. –12	8. Yes
9. –7	10. –2		
CHECK POST-3			
1. (B)	2. (C)	3. (A)	4. (C)
5. (A)	6. (x + a) (x – b)	7. 249991	8. (x + y + 1) (x - y - 3)
9. 119	10. $(\sqrt{3}a + \sqrt{5}b)^3$		

EXERCISE-1 (ELEMENTARY)

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	С	В	D	С	В	D	D	D	С	В
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	D	Α	В	D	В	D	Α	В	D	С
Que.	21	22	23	24	25					
Ans.	С	С	С	Α	Α					

EXERCISE-2 (SEASONED)

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	Α	С	С	С	D	А	С	А	В	В

(Gaining	Apex Coa	ching Ce	ntre	
	(Where	Горреrs make	Toppers	5) Po	olynomials
EXERC	ISE-3 (CBSE PAT	TERN)			
1.	(i), (ii), (iii), (vi)				
2.	(i) 3	(ii) –2	(iii) 0	(iv) ³ 4	
3.	(i) 2	(ii) 3	(iii) 2	(iv) 4	
4.	(i) cubic	(ii) quadratic	(iii) quadratic	(iv) linear	(v) cubic
5.	(i) 9	(ii) $4 + \sqrt{11}$	(iii) 14		
6.	(i) 4	(ii) $-\frac{1}{2}$	(iii) −1, −2	(iv) 1, 2, 3	
l	(v) 0, 0	(vi) - <u>s</u> r			
7.	(i) yes	(ii) both	(iii) only 0	(iv) only $-\frac{1}{\sqrt{2}}$	(v) both
8.	(i) 4	(ii) –5	(iii) –2	(iv) 7	
9.	(i) yes	(ii) yes	(iii) yes		
10	a= 2	11. (i) 8a³	(ii) 2(4a ² + b ² + c ² + 2	bc)	
12	e. (i) 0	(ii) 0	(iii) –8700		
14	I. O				

15. k = -3 and zeroes are -3, -6, 5

EXERCISE-4 (COMPETITIVE ASSESSMENT)

Que.	1	2	3	4	5	6	7
Ans.	А	А	А	А	Α	В	А

Class IX : Mathematics	
	IMPORTANT NOTES
]	
62	